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VIBRATION OF COMPOSITE STRUCTURES

Charles W. Bert

School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma

i. _INTRODUCTION

The purpose of this paper is to review some of the recent contributions to
the field of vibration of composite structures. The topics of fatigue and frac-
ture, while quite important in the overall dynamic performance of composite
structures, are not considered in this survey.

The survey treats these topics: dynamic stiffness and damping of composite
materials, beams and curved bars and rings, flat panels, and cylindrically curved
panels and shells. It concludes with some suggestions for future research.

2. DYNAMIC STIF-NESS AND DAM!PING QF COMPOSITE MATERIALS

2.1 Stiffness of Unidirectional iber-Reinforced Material

It is well established that fiber-reinforced composite materials, by virtue

of the geometry of the fibers acting as stiffeners, behave macroscopically like
homogeneous but anisotropic materials. The class of elastic symmetry depends
upon the geometric arrangement of the fibers (Table 1).

Table 1. Effect of Fiber Arrangement on Elastic
Symmetry of Unidirectional Composites

Arrangement of Fibers Practical
in Cross Section Examles Class of Elastic Sv-metr:

Very-small-diameter fibers Glass/resin, Transversely isotropic (isotropic
packed statistically iso- graphite/resin in fiber cross-sectional plane)
tropically

r:exagonaliy packed fibers Same Same

Fibers arranged in a single 3oron/epoxy Orthotropic with planes of svm-
row or in a rectangular tape metry intersecting in the fiber

array direction and directions of rows
and columns of fibers

Assuming linear stress-strain behavior, the generalized Hooke's law may be
written in compliance matrix form, using contracted notation, as follows:

Ci [ ] [J] .) (1)
ij "j

where in the three-dimensional case, the strain matrix and stress matrix are

-2 2 2 Y" = C t>£...,.: = .- i,=22,c33,'(Y,:,I ;
'i" (2)

.T. .T-
[ .} {; , ' , 6 [ I , 2 Z 7 Z ' [ I

~- - -. ~
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Here Eii normal strain, yij E engineering shear strain, Zii normal stress,
and :ij shear stress.

For the orthotropic case, the compliance matrix takes the form

Sl1 SrZ SI3 0 0 0

S12 5 2  S23  0 0 0

S1 3 S23 S33 0 0 0
Es ij] 0 0 0 S14 0 0 (3)

0 0 0 0 S5 5  0

0 0 0 0 0 S56

For the case of transverse isotropy, with the 23 plane as the plane of iso-
tropy, array (3) takes the following special form: S13 = S12, S32 =S12,
S4 = 2(S. - Si2) and S 5 = S66.

Equation (1) can be inverted to obtain the 3-D stiffness form as follows:

CC j (4)t i [ ij],£j ,

Here, the Cj are the three-dimensional Cauchy stiffness coefficients. Although
equation (1) is applicable to one-, two-, or three-dimensional stress systems,
equation (4) is applicable only in the case of 3-D stress systems. In the case
of a relatively chin member, it is often acceptable to neglect the effect of
thickness normal stress (j3), then equation (1) is inverted to obtain the
following expression

where the Qi- are the plane-stress reduced stiffnesses which are related to the
three-dimensional Cauchy stiffnesses as follows:

Qij = Cij - (C 3 C /C3) (6)

All of the above elastic coefficients (Sij Ci;, and Qi4) can be related to
the so-called engineering coefficients, Young's moduii E, olssons ratios i,

and shear moduli Gij; see, for example, [",2,3J.

I: is noted that both the compliance [Si ] and stiffness ([C-ij or [Qij])

matrices are symmetric as a consequence of conservation of strain energy, as was
first shown very elegantly by George Green in the early 1800's. This reduces the
number of indeoendent elastic coefficients in every case. It is emphasized that
in writing all of the preceding equations the stresses, strains, and elastic co-
efficients are all related to material-symmetry axes, i.e., axes formed by the
intersection of mutually perpendicular planes of symmetry. In a unidirectional-
fiber-reinforced composite, one axis is obviously the fiber direction.

If one wishes to express the stresses, strains, or elastic coefficients
with respect to an orthogonal coordinate system oriented with its z axis in line
with direction xi, with its x,y axes oriented at an angle . with respect to the
xi, x2 axes, standard tensor relations can be used to obtain appropriate trans-
formation equations L1,2,3]. Then

h d s h t iy sel:e oy o(7)

The bar denotes that the quantity is related to the (x,y,z) coordinate s';stem.
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It is noted that in the array of equation (7), certain of the coefficients
(C16 , C26, and C,5) that were identically zero in the orthotropic case, equation
(3), are no longer zero. Thus,

Si1  S12  S,3 0 0 S16

S12 s2Z S23 0 0 S,6

ij]  S13 92 3 S33 0 0 S 6  (8)
0 0 0 S44S45 0

0 0 0 s45 s55 0

5'-1 S2 6 S36 0 0 S66

The number of non-zero coefficients has increased from 12 to 20 and the number
of independent ones has increased from 9 to 13. The elastic symmetry class re-
presented by equation (8) is called monoclinic. In other words, a material that
is orthotropic with respect to symmetry axes 1,2,3 behaves like a monoclinic
material with respect to axes x,y,z as defined above.

Table 2 summarizes the various symmetry classes of importance in fiber-

reinforced composite materials.

Table 2. Summary of Selected Elastic Symmetry Classes

Symmetry Total No. of Non-Zero No. of Independent
Class Elastic Coefficients Elastic Coefficients

Three-Dimensional-Stress Cases:

General anisotropic 36 21

Monoclinic 20 13

Orthotropic 12 9

Transversely isotropic 12 5

Isotropic 12 2

Plane-Stress Cases:

General anisotropic =
monoclinic (symm. about x3=0) 9 6

Orthotropic (= transversely
isotropic in x2x3 plane) 54

Transversely isotropic in
xlx 2 plane (= isotropic) 5 2

2.2 Stiffness of Laminates

To obtain certain desired combinations of properties, such as stiffnesses
and strengths, it is usually necessary to arrange individual layers (sometimes
called laminae) of fiber-reinforced composite materials to form a multi-layer
laminate. It is conceptually possible to treat structural elements constructed
of laminates by applying the relations of three-dimensional elastodynamics to
each individual layer in conjunction with appropriate continuity and boundary
conditions. However, the resulting analysis is conceptually so complicated that
it is not practical to carry out except in a few very special cases. To avoid
this complexity, it is the usual engineering practice to make certain hypotheses
regarding the kinematics of deformation and then to work with stiffnesses which
are integrated through the thickness.
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The simplest kinematic assumption is the Bernoulli-Euler one for slender
beams (or the Kirchhoff-Love one for thin plates or shells): plane sections re-
main plane and normal to the deflected middle surface during deformation, and
undergo no thickness stretching. In view of the low shear modulus of most com-
posite materials relative to their in-plane elastic moduli, it is more accurate
to use the Bresse-Timoshenko hypothesis [4,5] for beams (or the Reissner-Mindlin
one [6,7] for plates and shells). In this hypothesis, it is assumed that plane
sections remain plane but not necessarily normal to the deflected middle surface
and suffer no thickness stretching. Thus, the additional deflection due to
thickness-shear deformation is accounted for in an approximate sense. Mathe-
matically

u(xyz) u0 (Xy) + 3 (x,y)

u (X Y+Zx w(x,y,z) = w (x,y) (9)
v(x,y,z) v V(X,y) + z8 (x,y) 0

Here u,v are displacements in the x,y directions; w is the normal deflection;
UoVoW o are the middle-surface displacements in the x,y,z directions; ( )x -

3( )/3x; 3x and 3v are the bending slopes and differ from the total slopes 5y
the respective shehr strains. Using equations (9) in the equations of linear
elasticity theory, one gets

ci(x,Y,z) = CO(x,y) + zKi(x,y) (i=1,2,6) (10)

Here F? are the mid-plane stretching and shearing strains and <. are the bending

and twisting curvatures.

Now the stress resultants and stress couples are related to the correspond-
ing stress components as follows for a flat laminate (plate):

h/2 PhI2

N.j . dz (i=1,2,6) ; Q. dz (i=4,5)'
J1 -h/2 1 -h/2'

hh/2 -
M. -h/ zai. dz (i=1,2,6)1 -h/ 2 1

Here N4 are in-plane forces per unit width, Qi are thickness shear forces per
unit width, M i are bending or twisting moments per unit width, and h is the
total laminate thickness.

Substituting equations (5) and (10) in equations (11) and performing the
integrations, one obtains the following laminated plate constitutive relations:

i_ _ i: ,Bij (i,j=1,2,6)

{ i B} ij  D ij [ (12)

-Qi}  [Ai] j  (i,j-4,5)

Here the Aij (i,j-i,2,6) are in-plane (stretching and shearing) stiffnesses, Aj4
(i,j- 4 ,5) are thickness-shear stiffnesses, BiA are in-plane/out-of-plane ccupl g
stiffnesses, and Dij are out-of-plane (bending and twisting) stiffnesse given
by:



n6

Aij " Qj dz Z (z -zI_ Q
ii 1 ij

.(zf - 2 I 2
B zQj dz I (z z z ziQi. (i,j=1,2,6)

(13)nD = ! 2-i1 3 3 . ()
iD 3 2z =-3 a=i

p _ n I(,)

Aij kik I Qij dz = k.k. j Z (zz -Z 4I)Qij (i,j=4,5)

Here index Z refers to the Z-th layer, n t total number of layers, z._, and z.
are z-coordinate positions of the top and bottom surfaces of the typzcil layer
Z, and the ki are the shear-correction coefficients to account for the nonlinear
distribution of the thickness shear strains through the total thickness.

The basic difference between the theories of Refs. [8] and [9] is that t he
former defined the plate stiffnesses (Aij, etc.) on the basis of the three-
dimensional material stiffness coefficients (Ci.) while the latter defined them
in terms of the Qij as in equations (13). Wang and Chou [10] showed that the
latter approach gives more accurate results even for relatively thick plates.

There is a nearly unlimited number of combinations of layer orientations
possible in a laminate. Table 3 lists commonly used lamination arrangements
consisting of multiple plies all having the same thickness and of identical
composite material (except for orientation).

Table 3. Characteristics of Some Commonly Used Lamination Arrangements

Laminate Name Descriotion Stiffness Characteristics Ref.

Aligned parallel-ply All layers at 0 AIE=Az5=D:-6D-a=all 34=0 'ii]

Off-axis parallel-ply All layers at All Bij-O []

Symmetric cross-ply Alternating 0' & 900 Ai =A2g=Dg=D-a=all 3..=0 L3,1l,
layers; n=oc .j 12]

Antisymmetric Alternating 00 & 90 A,6 A-z=D, -DZ=0; 3::--B:: ; 73,11,
cross-ply layers; n=even remainder of 3i4-0 127

Symmetric regular Alternating +i & -6 All Bij- 0 ; A:S,Az, D,DZ£ [3,11,
angle-ply layers; n=odd decrease as n is increased 12]

Antisymmetric regu- Alternating +t & -6 A6lA26-BIiBIZBZZ-BE -:31
lar angle-ply layers; n=even D16=DZE=O 12]
Symmetric balanced Center 2 plies at i; AI6eAGeall Bi=O; D and [13]

angle-ply remainder alter- DZ6 decrease as n is
nating +8 & -6; increased
n-even

Quasi-isotropic One or more sets of Ai:=A Z-A, Aj:-')A, [3,11]
(isotropic A.. only) layers at 0, i -,2e, A6E--.)(A/2), A7.:A7-,O

36 ,..,(N-I)e:, where
e1-180/N, N E no. of
different orienta-
tions (integer > 3)
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2.3 Stiffness of Comoosites with Different Behavior in Tension and Compression

Analysis of materials having different stress-strain relations in tension
and compression dates back to Saint-Venant (1864); see [14]. Examples of mate-
rials which have been found to demonstrate this behavior include various cords
and fabric embedded in rubber, sintered metal, and certain biological materials
[141. Modern treatment of the topic dates from the 1965 work of Ambartsumyan
[15], in which he instituted the concept of a bimodulus model for isotropic
materials with different properties in tension and compression. This concept
was later generalized to anisotropic material by the present investigator [16,
17] using a fiber-governed symmetric elastic model which was found to agree well
with experimental results for cord/rubber.

In the fiber-governed symmetric elastic model [16,17], it is assumed that
there is a complete array of stiffnesses which govern when the fiber-direction
strain (ef) is tensile and another complete array when it is compressive. That
is, for a thin laminate, the plane-stress reduced stiffness matrix is

[Qi~k] I Q i j l ] if Zff > 0

= l f (14)

[Qij21 if < 0

Here the index k refers to either the tensile (k=l) or compressive (k=2) set of
stiffnesses.

For a beam, plate, or shell undergoing bending, the locus of points at
which -f=O is called the neutral surface. In an ordinary (not bimodulus) mate-
rial, the neutral-surface location is not especially important. However, in a
bimodulus material, its location is crucial, and in general it does not coincide
with the middle surface for such materials. Thus, even a singie layer of hi-
modulus material exhibits bending-stretching coupling (analogous to an unsym-
metrically laminated laminate), except when the magnitude of the middle-surface
strain in the fiber direction exceeds the bending strain. in the latter excep-
tion, a bimodulus material acts no differently than an ordinary one.

Depending upon the structural configuration, boundary conditions, and
loading, even in a single-layer plate, the neutral surface in general is not a
horizontal plane. Since the layer properties (Qijk) depend upon the sign of
(and thus upon the neutral-surface position) and the plate stiffnesses (A44,
BiADij) upon the Qi~k as in equations (13), it is clear that in general a bi-
modulus plate is nonnomogeneous in its plane, i.e., =he plate sciffnesses de-

pend upon position (x,y) in the plane [18]. However, unlike a olate with taper-
ing thickness, here the plate stiffnesses are not even known a priori. This
situation is reminiscent of the elastoplastic bending problem, for which the
elastoplastic boundary is not known a priori.

2.4 Damping of Filamentary Composites and Laminates

Although there are enumerable mathematical models which have been proposed
to describe internal-friction in materials [19], by far the most widely used is
the Kimball-Lovell model [20]. This model assumed that the energy dissipated is
proportional to the square of the amplitude but independent of frequency. in the
case of sinusoidal excitation, it is convenient to apply this model by replacing
the elastic stiffnesses (Qij) of a perfectly elastic material by the complex
stiffnesses (Qi) defined by

" AR I

Qij A i + iQi. (15)



Here i E vCZF, QijR E real (storage) component of stiffness, and Qii I E imaginary

(loss) component. Although, as discussed in [21], there are considerable dif-
ficulties in applying the complex-stiffness approach to nonsinusoidally excited
systems, no alternative proposed to date appears to offer much promise, wi:h the
possible exception of the fractional-derivative approach originated by Caputo and

recently applied to isotropic adhesive material Ly Bagley and Torvik [2-].
Preliminary attempts to apply this model to boron-epoxy have not been success-

ful.

The pioneering work in analysis of damping in fiber-reinforced composite
materials was due to Hashin [23], using the elastic-viscoelastic correspondence

principle. Unfortunately, this approach requires explicit expressions for the
elastic stiffnesses, and such expressions are generally not sufficiently accu-
rate for transverse and shear stiffnesses (Q22 and Q66). These limitations were

removed in [24], a complete characterization of boron/epoxy.

A variety of experimental techniques have been used to experimentally

characterize the dynamic stiffness and damping of composite materials. Refer-
ence [25] discussed the free vibration, pulse propagation, and forced vibrator

response methods. Selected recent sources of experimental data for various
filamentary composites are listed in Table a.

Table 4. Selected Sources of Experimental Data on Damping
of Fiber-Reinforced Composite Materials

Fiber Material Fiber Form Matrix Material Ref.

Glass Continuous Epoxy 26,27

Boron Continuous Epoxy 28,29

Graphite Continuous Epoxy 28,30

Glass Short Polyester 31

Aramid Woven cloth Polyester 32

3. BEA!S, CURVED BARS, AND RINGS

Reference [33] surveyed the static behavior of such structural elements
and discussed 25 pertinent references through 1973. Here emphasis is placed on

the structural dynamics aspects.

3.1 Straight Beams of Anisotropic Material

For analyzing the lower flexural modes of straight beams made of ortho-

tropic material (aligned fiber-reinforced composite material), the dynamic
version of the simple Bernoulli-Euler type theory is adequate. Of course, the

appropriate Young's modulus (the longitudinal one) must be used in defining the

flexural rigidity.

Since composite materials typically have much lower ratios of shear modulus
to Young's modulus than homogeneous isotropic materials, they usually exhibit
=ore transverse shearing action than isotropic materials. In the aligned (Ortho-
tropic) case, one may use the equations of Bresse-Timoshenko beam theory [,5],
provided that one uses the the appropriate elastic moduli: longitudinal Young's
modulus for E and the appropriate (thickness shear or in-plane shear) shear

modulus for G. Apparently this approach was used for orthotropic beams first by

Nowinski [34] and later by others '35-36].

To improve the dynamic analysis of orthotropic beams still further, it is,
of course, necessary to use a three-dimensional elastcdynamic approach. Such a



procedure was used, for example, by Ohnabe and Nowinski [37], who extended the
Pochammer-Chree equations of isotropic elastodynamics to the cylindrically
orthotropic case.

For beams made of off-axis or nonaligned fiber-reinforced material (i.e.,
general anisotropic material), there is an elastic coupling between the flex-
ural and twisting actions. This was analyzed by Lekhnitskii [2], sections 27
and 28, for the static case. Apparently the first dynamic analysis including
this coupling was Abarcar and Cunniff's 1972 analysis [38], who combined Bresse-
Timoshenko beam theory with Lekhnitskii's flexural-torsional coupling theory.
They formulated the problem as one in Myklestad's transfer-matrix theory [39].
Further experimental and transfer-matrix analyses were carried out by Ritchie
et al. [40-41]. Later Miller and Adams [42] obtained a purely analytical solu-
tion for a theory based on Bernoulli-Euler beam theory rather than the Bresse-
Timoshenko one.

Recently Teoh and Huang [43] presented a closed-form solution for free
vibrations of Bresse-Timoshenko-Lekhnitskii beams and Teh and Huang [44] ana-
lyzed the same problem using finite elements based on an energy formulation.
Most recently Wallace and Bert [45] extended the transfer-matrix approach to
include KLmball-Lovell material damping. At a considerable saving in compu-
tational time, they were able to predict all but the pure "plate modes" and
associated frequencies and damping factors for a wide beam previously investi-
gated experimentally [46] and analytically [47].

Mindlin [48] presented a three-dimensional dynamic analysis of the low-
frequency modes of anisotropic elastic bars of arbitrary cross section and
applied it to bars with elliptic, triangular, and rectangular cross sections.

3.2 Laminated and Sandwich Straizht Beams

A laminated beam is one having two or more layers, with all layers of the
same thickness but of different materials (or fiber orientations). In contrast
a sandwich beam is one having one (or more) thick, flexible core and two (or
more) thin, stiff facings. A simple sandwich has one core between two facings,
while a multicore sandwich ("club sandwich") has more than one core sandwiched
between more than two facings [49]. Actually a multilaver beam with constrained
viscoelastic layers can be considered to be a multicore sandwich.

Although laminated beams are simpler in geometry than laminated plates,
relatively few vibrational analyses of this configuration have appeared in the
recent lit-rature, exemplified by [50-54].

Since there is a voluminous literature on the linear analysis of free and
sinusoidally forced vibration of simple sandwich beams (much of the early work
was reviewed in [55]), attention here is focused on the literature of the past
eight years with particular attention to various complexities. The effects of
concentrated masses were investigated in [56-57], while Ref. [58] considered the
effect of local shearing prevention, such as that occurring due to the presence
of rivets near the ends. The effects of various loadings have been investigated;
these included impact [59], moving force systems [60], and flutter [61]. Hyer
et al. [62] investigated the effect of geometric nonlinearity, both analytically
and experimentally.

The effects of a variety of configuration parameters on sandwich-beam
vibration have been studied. Sandman [63] considered the effects of segmenting,
i.e., discrete changes in stiffness and mass along the length of the beam, while
D.K. Rao and Stuhler [64] investigated the effect of a smoothly tapering cross
section. The presence of pre-twist, as in an aerodynamic surface such as a
compressor blade, was shown by D.K. Rao [63] to result in drastic reduction of
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the effective loss factor for the firs: flexural mode. An unsymmetric sandwich
is one which does not have mid-plane symmetry. Vibrational analyses of unsym-

metric sandwich beams having different top and bottom facings were presented by
Yan and Dowell £66], Y.V.K.S. Rao and Nakra [67], and by D.K. Rao [68-691.
Reference [69] also included the effect of multiple cores. Y.V.K.S. Rao [70]
analyzed an unsymmetric sandwich beam that he called a dual-core sandwich con-
figuration; it consisted of two different core materials (back-to-back) sand-
wiched between only two facings.

3.3 Curved Beams and Rings

The governing equations of motion for curved beams and rings are identi-
cal; the difference comes in via the boundary conditions. A curved beam or
arch has specified boundary conditions at each end, while a ring must have a
solution which is circumferentially continuous, i.e., periodic in the circum-
ferential angular position. Although there have been many vibrational analyses
of arches, curved beams, and rings, apparently the only one strictly applicable
to a composite ring is [71]. It treated free vibration of an orthotrooic-
material thick ring subjected to steady centrifugal loading, supported by con-
tinuous radial elastic support, and included transverse shear deformation. The
application was a hoop-wound rim-type flywheel for automotive energy-storage
applications.

There have been a few dynamic analyses of curved sandwich beams and rings.
Ahmed [72] performed a finite-element analysis of a curved beam. References
[73-75] analyzed the steady-state dynamic response of damped sandwich rings,
while Sagartz [76-77] considered the transient response.

4. FLAT PANELS (PLATES)

Since publication of Leissa's comprehensive monograph [78] on free vibra-
tion of plates in general, there have been a number of review articles [33,79-817
which surveyed the vibration of composite-material and sandwich plates. Thus,
in the interests of brevity, only a few very recent developments not discussed
in the above references are considered here.

&.! Plates of AnisotroDic Material

Linear analyses included the following: for orthotropic rectangular
plates, Wilson [82] considered the response to moving loads, while for free
vibration of anisotropic rectangular plates subjected to in-plane forces, Laura

and Luisoni [83] presented a Ritz-type solution with a polynomial approximating
function. Reference [84] considered moderately thick rectangular plates of bi-
modulus orthotropic material. Reference [85] discussed the application of a
combination of the finite-strip method with the deflection-contour method and
obtained reasonably good results for an orthotropic square plate.

Linear analyses of cylindrically orthotropic plates included a power-series
solution of a spinning annular plate with simply supported reinforcing beams at
both edges [86], finite-element and time-averaged hclographic investigations of
annular plates [87], and a spline-function Ritz analysis of plates having a
sector planform [38].

Nonlinear analyses with geometric nonlinearity included two papers on
orthotropic, moderately thick, rectangular plates [39-90]. Also there was a
recent nonlinear analysis of anisotrcpic skew (parallelogram) plates [91].

4.2 Laminated Plates of Anisotronic Material

There have been relatively few analyses of laminated plates, since the



latest survey [81]. Rao and Singh [92] presented an optimal design synthesis
procedure to design rectangular places of minimum weight subject to contraints
on natural frequencies. A finite-element analysis including thickness-shear
flexibility was developed by Reddy [93] and compared with various results in
the literature. Crawley 794] reported extensive experimental result3 for
cantilever rectangular plates of graphite/epoxy and graphite/epoxy-aluminum and
compared the results with moderatelv thick finite-element predictions.
Chatterjee and Kulkarni [95] analyzed flutter of moderately thick rectangular
panels of damped, laminated composite materials.

Elishakoff and Stavsky [96] analyzed vibration of laminated cylindrically
orthotropic circular annular plates.

5. CYLINDRICALLY CURVED PANELS ANID CMPLETE CYLINDERS

This area has been surveyed in Leissa's comprehensive monograph [97] on
free vibration of shells in general and in a number of review articles [33,98,
99] on vibration of composite-material shells. Here, in the interests of
brevity, only cylindrical shells, either cylindrically curved panels or circun-
ferentially complete cylinders, are reviewed. Emphasis is placed on work
carried out from 1973 to the present.

It should be recalled that for placeq there are primarily two classes cc
analyses (linear and nonlinear), three kinematic situations (3-D, mcderate ;
thick, or thin), and two material-geometry cases (single-layer/sm.=etriza.'
laminated, and arbitrarily laminated). In the case of shells, there is a much
greater variety in the kinematic situations. The hierarchy of shell theories,
from most accurate to leasc accurate (which may be either with or without
thickness-shear and thickness-normal action)[!00] is:

1) Exact theory, like the Langhaar-Boresi theory
2) Second-approximation theories, like Love's second-approximation

theory, Flugge's and Novozhilov's
3) First-approximation theories, such as Love's first apprcximation

theory, and the increasingly popular Sanders theory
4) Morley's shallow-shell theory
5) Donnell's very-shallow-shell theory

The selection of an appropriate cheory; depends upon the method of solution.
For example, if a whole-shell analytical method is used for a complete shell,
the Donnell and Morley theories may not be sufficiently accurate for predicting
the frequencies of the lower circumferential modes. On the other hand, if the
shell is discretized into many small regions, each of which is individually very
shallow, then the Morley or Donnell theory may be entirely adequate and the
complexity of the more elaborate theories may not be justified.

5.1 Shells of Anisotrooic Material

Since this theory is relatively simple, especially for first-approximation
or simpler theory and orthotropic material, recent emphasis has been on comi-
cating effects.

Babu and Reddy [101] presented one of the relatively few analyses of
cylindrical panels. Fortier [102] considered the effect of external pressure on
cylindrical panel vibration. D}m [103] investigaced the effect of this same
loading on complete cylinders, while Penzes and Kraus [lO] also added the
effects of torsion, axial force, and rotation about the axis (centrifugal load-
ing). Kuptsov [105] considered the effect of centrifugal loading due to rota-
tion about a shell diameter at one end of the shell. The effects of internal
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irrotational flow [106-107], external flow [108], and internal swirling flow
[109-110] on orthotropic pipelines have been analyzed, as have the effects of
random boundary-layer internal-pressure fields [!11].

In one of the relatively few analyses of nonlinear vibration of a shell of
nonlinear anisotropic material, Shahinpoor [112] analyzed a thin tube of
Ericksen-Rivlin material. The large-amplitude (geometrically nonlinear) vibra-
tions of an orthotropic cylindrical shell with axially tapering thickness was
recently investigated by Ramachandran [113].

Concerning moderately thick orthotropic shells, the work of Warburton and
Soni [114] on harmonically excited vibration, including material damping, is one
of the most extensive. Mangrum and Burns [115] considered the effect of a dis-
continuous pressure loading moving at constant axial velocity. Jain [116]
analyzed the vibration of a vertical cylinder partially filled with fluid, while
Shvets and Marchuk [117] considered a pipe with an internally flowing fluid.

All of the work just mentioned was limited to orthotropic material. One
of a few vibrational investigations of anisotropic (monoclinic) cylindrical
shells of moderately thick walls was recently reported in [i13]. The analysis
was formulated in terms of a higher-order shell theory? which retained some of
the exact kinematic features of the Langhaar-Boresi shell theory and yet in-
cluded thickness-shear deformation as in Reissner-Naghdi theory. The predicted
natural frequencies were found to agree reasonably well with experimentally
determined ones for a cylinder of unidirectional material oriented at 30
degrees to the axis of the cylinder.

5.2 Laminated and Sandwich Shells

The effects of several different boundary conditions on free vibrations of
laminated, circular cyiindrical shells were investigated analytically by Abhat
and Wilcox [119] and Fortier and Rossettos [120]. Reference [119] is particular-
ly interesting in that it introduced a new, improved method of reducing the
general eighth-order shell frequency determinant to a fourth-order one. The re-
sults obtained using this method are considerably more accurate than those ob-
tained by Yu's reduction method [121]. In [119] the new method was applied to
cross-ply shells with either clamped or freely supported ends. In [120], four
different edge conditions were considered for both cross-ply and angle-oly lami-
nares. In [122], four different boundary conditions were investigated experi-
mentally.

In one of the relatively scarce analyses of noncircular laminated cylindri-
cal shells, Noor [123] applied the so-called multi-local method, which is a vari-
ation of the Hermitian difference technique. Optimization problems relating to
vibration of laminated anisotropic circular cylindrical shells were investigated

in [124-125].

A number of investigators considered the effects of various kinds of ex-
ternal loadings on free vibration of laminated cylindrical shells. References
[126] and [127] considered external pressure; Padovan [128] included pressure,
axial load, toroue, and centrifugal and Coriolis forces.

Berger [129] analyzed the vibrations of an infinitely long, layered ortho-
tropic cylindrical shell in an acoustic medium. Muggeridge and Buckley [130]
carried out analytical and experimental investigations on symmetric balanced
angle-ply cylinders in a fluid.

There have been a number of analyses of moderately thick circular cylindri-

cal shells, i.e., those with thickness-shear flexibility explicitly included.
Fortier and Rossettos [131] considered shallow cylindrically curved panels of
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cross-ply lamination. Sinha and A.K. Rath [1323 considered 
the same geometry

subject to free vibration and buckling. B.K. Rath and Das [133] analyzed cross-
ply laminated complete cylindrical shells by three shell theories: a refined
moderately thick-shell theory, "classical" thin-shell theory (Love's first
approximation), and Donnell's thin-shell theory.

Sun and Whitney [134] presented a theory for moderately thick laminated
cylindrical shells. This theory was applied by C.T. Sun and P.W. Sun [135-136]
to several cases of suddenly applied loading, using classical separation of
variables and the Mindlin-Goodman technique.

Various applications of the finite-element technique have been made to
moderately thick, laminated, circular cylindrical shells. Shivakumar and Murty
[137] developed a ring-type element with sixteen degrees of freedom. Crawley
[94] compared FEM and experimental results. Bradford and Dong [138] devised a
refined element in which a number of elements through the thickness comprise a
laminate,and applied it to shells under initial stress.

There have been relatively few three-dimensional elastodynamic analyses of
laminated cylinders. Two examples of such analyses are those of Srinivas [139]
and Muiholland and Gupta [140].

Recently the activity in vibration of sandwich shells has diminished in
comparison to its vitality in the 1960's. However, one should mention the
theoretical and experimental investigations by Harari and Sandman [141-142] on
sandwich shells with graphite/epoxy facings and the nonlinear parametric vibra-
tion analysis of Popov et al. [1433.

6. SUGGESTIONS FOR FUTURE RESEARCH

The author believes that the following needs are most pressing in the

areas covered by this survey.

1. More realistic mathematical modeling of material behavior is urgently
needed. This includes such effects as material damping, stress-strain non-
linearity in shear, different behavior in tension and compression, and effects
of temperature, humidity, and material damage on the stiffness properties.
Experimental verification of the improved models is also of importance.

2. Means for more realistic incorporation of practically important local-
ized discontinuities should be developed. These factors include local doublers
and edge reinforcements, access ports and other cutouts, and attached localized
masses.

3. A comprehensive and comparative assessment of the numerous laminated
shell theories presently available is sorely needed. The goal should be to
determine the simplest theory necessary for practical engineering calculation
of the structural dynamic response of composite shell structures.

4. Development of reasonably general design data to guide the struc:ural
designer in application of composites in dynamically loaded structures is most
urgently needed.
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